30,331 research outputs found

    Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 antiferroelectric thick films

    Get PDF
    In present work, (100)-oriented (Pb0.97La0.02)(Zr0.95-xSnxTi0.05)O3 antiferroelectric thick films with x=0.08, 0.20 and 0.38, were successfully fabricated. These compositions are located in orthorhombic phase region, the morphotropic phase boundary (MPB), and tetragonal phase region, respectively. The effects of their phase structure on the electrocaloric effect and the pyroelectric energy harvesting behavior were investigated. A considerable temperature reduction of ∆T=13, 33, and 27 oC, due to the ferroelectric-antiferroelectric phase transition, was obtained at 25 oC in these thick films for x=0.08, 0.20, and 0.38, respectively. Moreover, a huge harvested energy density per cycle of W= 3.6, 6.8, and 4.0 J/cm3 was also realized under the experimental condition in the thick films with x=0.08, 0.20, and 0.38, respectively. These results indicated that both the cooling performance and the pyroelectric energy harvesting in antiferroelectrics could be optimized by the proper phase structure control

    Fermion Pairing across a Dipolar Interaction Induced Resonance

    Full text link
    It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named as dipolar interaction induced resonaces (DIIR). In this letter, we study zero-temperature many-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range corrections, despite of the anisotropic nature of dipolar interaction. The pairing energy is as strong as a unitary Fermi gas nearby a magnetic Feshbach resonance. In the high density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing, and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.Comment: 4.5 pages, 4 figures, figures updated, minor changes in tex

    Quantum-classical transition for an analog of double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems

    Get PDF
    We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D2_2 chemical reaction. Thus we demonstrate the quantum--classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.Comment: 5 pages, 2 ps color figures. Accepted for publication in Phys. Rev.

    Weyl points and topological nodal superfluids in a face-centered cubic optical lattice

    Full text link
    We point out that a face-centered cubic (FCC) optical lattice, which can be realised by a simple scheme using three lasers, provides one a highly controllable platform for creating Weyl points and topological nodal superfluids in ultracold atoms. In non-interacting systems, Weyl points automatically arise in the Floquet band structure when shaking such FCC lattices, and sophisticated design of the tunnelling is not required. More interestingly, in the presence of attractive interaction between two hyperfine spin states, which experience the same shaken FCC lattice, a three-dimensional topological nodal superfluid emerges, and Weyl points show up as the gapless points in the quasiparticle spectrum. One could either create a double Weyl point of charge 2, or split it to two Weyl points of charge 1, which can be moved in the momentum space by tuning the interactions. Correspondingly, the Fermi arcs at the surface may be linked with each other or separated as individual ones.Comment: 5 pages, 2 figures in the main text; 2 pages, 2 figures in the supplemental materia

    Opportunities for weed manipulation using GMHT row crops

    Get PDF
    The herbicides and cultivation systems available in most non-GM crops allow farmers little flexibility as to when they control weeds. However, glyphosate and glufosinate-ammonium, as used in GM herbicide tolerant crops, offer the opportunity to control large weeds and weed control can be timed according to the agronomic and environmental aims of the user. This paper will use sugar beet as a model crop and report results where different approaches to weed control have been used and discuss their relevance in the wider agricultural and environmental contextNon peer reviewe

    Gamma-ray burst contributions to constraining the evolution of dark energy

    Full text link
    We explore the gamma-ray bursts' (GRBs') contributions in constraining the dark energy equation of state (EOS) at high (1.8<z<71.8 < z < 7) and at middle redshifts (0.5<z<1.80.5 < z < 1.8) and estimate how many GRBs are needed to get substantial constraints at high redshifts. We estimate the constraints with mock GRBs and mock type Ia supernovae (SNe Ia) for comparisons. When constraining the dark energy EOS in a certain redshift range, we allow the dark energy EOS parameter to vary only in that redshift bin and fix EOS parameters elsewhere to -1. We find that it is difficult to constrain the dark energy EOS beyond the redshifts of SNe Ia with GRBs unless some new luminosity relations for GRBs with smaller scatters are discovered. However, at middle redshifts, GRBs have comparable contributions with SNe Ia in constraining the dark energy EOS.Comment: 3 pages, 5 figures. Published in Astronomy and Astrophysics. Corrected referenc

    An edge index for the Quantum Spin-Hall effect

    Full text link
    Quantum Spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the Quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take same values as the Spin-Chern number previously introduced in the literature. The result gives an effective tool for the investigation of the edge channels' structure in Quantum Spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge.Comment: 4 pages, 3 figure
    • …
    corecore